Contents:
- 1. Mountain Waves
- 2. Density Current
- 3. Examples of the sphere
- 4. Linear anelastic equations for atmospheric vortices
- 5. Valley wind system
- 6. Valley wind system II
Mountain Waves
2D hydrostatic and nonhydrostatic mountain waves
a | \(\delta x\) | \(\delta z\) |
1 km | 200 m | 100 m |
10 km | 2 km | 100 m |
100 km | 20 km | 100 m |
Schaer test case
\(z(x)= h\,exp(\frac{-x^{2}}{a^{2}})cos^{2} (\frac{\pi\,x}{\lambda}) \),
\(h\,=\,400\,m\,\),
\(\lambda = 4000\,m\,\),
\( a = 5000\,m \).
Density Durrent
The density current test case is documented in Straka et al. (1993).
Geometry:
\(
\Delta T=\begin{cases}
0.0^\circ C & \text{if}\quad L>1.0, \\
-15.0^\circ C \,[\cos(\pi L)+1.0]\, /2. & \text{if}\quad L\le 1.0
\end{cases}
\)
where
\(L=[(x-x_c)x_r^{-1}]^2+[(z-z_c)z_r^{-1}]^2)^{1/2}\)
and \(x_{c}=0.0\,km\), \(x_{r}=4.0\,km\), \(z_{c}=3.0\,km\), \(z_{r}=2.0\,km\).
Density current at the beginning and after 300 s, 600 s and 900 s, starting from rest | Translating density current at the beginning and after 300 s, 600 s and 900 s, horizontal wind 20 m/s |
---|---|
Examples of the sphere
Geometry:
integration time: Maximal time step is 1800s
Acoustic waves
- Pertubation:
- \(p’ = \Delta p f(\lambda,\phi)g(z)\)
- \( f(\lambda , \phi) = \begin{cases} \frac{1}{2}cos(\pi \frac{r}{R}) & r < R \\
0 & r > R \end{cases}\) - \(g(z)= sin (\frac{n_{v}\,\phi\,z}{z_{T}})\)
Gravity waves
Profile:
- Case 1: \(N=0.01s^{-1}, n_{v}=1\)
- Case 2: \(N=0.02s^{-1}, n_{v}=1\)
- Case 3: \(N=0.01s^{-1}, n_{v}=2\)
Perturbation:
- \(\theta’ = \Delta\theta f(\lambda,\phi)\,g(z)\)
Mountain waves
Orography:
[latex] h(\lambda,\phi)=\frac{{h_{0}}{1+(r/d)^{2}}\)
with \(h_{0}\) as the height at the center of the mountain, \(d\) as the halt-width of the mountain and \(r\) as the distance from the center.
Profil:
Linear anelastic equations for atmospheric vortices
Construction of a test example:
\(V(r)= \frac{1}{2r}\,\zeta_{0}\,b^{2}\,(1-exp(-\frac{r^{2}}{b^{2}}))\)
is computed from the radial integration of a Gaussian vorticity profile:
\(\zeta(r)=\zeta_{0}\,exp[-(\frac{r}{b})^{2}]=\frac{1}{r}\frac{\delta}{\delta r}[rV(r)]\) with
\( \zeta_{0}= 2.34 \cdot 10^{-3}\,s^{-1}\) and \( b = 53.4\,km\).
\(\zeta(r)=\frac{\delta v}{\delta x}-\frac{\delta u}{\delta y}\)
with \(u= V(r) sin \lambda = -V(r) \frac{y}{r}\) and \(u= V(r) cos \lambda = V(r) \frac{x}{r}\)
-> \(\zeta(r) = V’(r)+\frac{V(r)}{r} =\frac{1}{r}\frac{\delta}{\delta r}[rV(r)]\)
\(V(r,z)=V(r)exp\, [-\frac{z^{a}}{\alpha\,L_{z}^{\alpha}}]\)
where \(L_{z}=6\,km\) indicates the depth of the barotropic part of the vortex and \(\alpha = 2.5\) is the vertical decay rate of the wind in the baroclinic region.
\(\theta(z)=\theta_0 \,exp[\frac{N^2}{g}z]\) is given by the buoyancy frequency \( N=10^{-2}\text{s}^{-2}\,\) which represents boundary conditions for a sufficient large radius. This potential temperature is used to calculate the density- and pressure profile. These profiles may be computed by integration in r- and z-direction for every grid cell from the edge of the grid to the centre.
height [m] |
density [kg/m^3] |
pressure [Pa] |
23867 | 0.05 | 3000 |
22047 | 0.07 | 4000 |
20658 | 0.08 | 5000 |
19546 | 0.1 | 6000 |
17826 | 0.14 | 8000 |
16535 | 0.18 | 10000 |
15227 | 0.22 | 15000 |
14137 | 0.25 | 20000 |
13193 | 0.29 | 25000 |
9647 | 0.44 | 30000 |
8553 | 0.49 | 35000 |
7573 | 0.55 | 40000 |
6682 | 0.6 | 45000 |
5870 | 0.66 | 50000 |
5123 | 0.71 | 55000 |
4427 | 0.76 | 60000 |
3779 | 0.81 | 65000 |
3171 | 0.87 | 70000 |
2599 | 0.92 | 75000 |
2058 | 0.97 | 80000 |
1545 | 1.02 | 85000 |
1057 | 1.07 | 90000 |
590 | 1.12 | 950000 |
141 | 1.16 | 100000 |
0 | 1.18 | 10163 |
- \( \bar{r}=\sqrt{x^{2}+y^{2}}\)
- \( \bar{i}=r_{\bar{i}} \le \bar{r} \le r_{\bar{i}+1}\)
- \( \bar{\theta} (r)=\frac{[\theta _{\bar{i}+1}\, (r_{\bar{i}+1}-\bar{r})+\theta_{\bar{i}+1}\, (\bar{r}-r_{\bar{i}})]}{r_{\bar{i}+1}-r_{\bar{i}}}\)
\(\theta_{i}(r,\lambda,z)= A\,cos\,(3\lambda)\,exp\,[-(\frac{(r-r_{b})^{2}}{\sigma _{r}^{2}})+\frac{(z-z_{b})^{2}}{\sigma _{z}^{4}}]\)
where \(r_{b}=50\,km, z_{b}=6\,km, \sigma _{r}=15\,km, \sigma _{z}=3\,km\) and \(A=0.5\,K\).
Configuration of model domain:
-
- 400 x 400 km horizontal grid points with 3-km spacing
-
- z= 0 to 20 km, spacing pf 200m
-
- necessity of periodic outer boundary conditions in both directions
-
- necessity of constant time steps of 10 sec
Profile:
Simulation with ASAM:
-
- Horizontal cross section of vertical velocity \((ms^{-1}), z=8.2\,km, 1200×1200\,km\)
-
- Horizontal cross section of vertical velocity \((ms^{-1})\) with/without potential perturbation at 2 hours,\(z=8.2\,km, 180×180\,km\)
Valley wind systems
- Horizontal cross section of vertical velocity \((ms^{-1})\) with/without potential perturbation at 2 hours,\(z=8.2\,km, 180×180\,km\)
-
- Examples after Schmidli (2008)
-
- part of the Terrain-induced Rotor Experiment
-
- Grid:
-
- across valley (x-direction): 120 km with spacing of 1 km
-
- along valley (y-direction): 400 m with a spacing of 1 km
-
- vertical direction: 6.2 km with spacing of 20 m newr the ground up to 200 m above 2 km
-
- lateral boundary conditions are periodic
-
- as top boundary conditions a Rayleigh sponge was specified
-
- Coriolis force is turned off for all simulations
-
- models were integrated for 12 hours from sunrise (0600 local time(LT)) to sunset (1800LT)
-
- Valley:
-
- \( z=h(x,y)=h_{p}h_{x}(x)h_{y}(y) \)
where
\(h_x(x) = \left \{ \begin{array}{ll} 0 & |x| \le V_x \\ \frac{1}{2}-\frac{1}{2} \cos \left ( \pi \frac{|x| – V_x}{S_x} \right ) & V_x < |x| < X_2 \\ 1 & X_2 \le |x| \le X_3 \\ \frac{1}{2} + \frac{1}{2} \cos \left ( \pi \frac{|x| – X_3}{S_x} \right ) & X_3 < |x| < X_4 \\ 0 & |x| \ge X_4 \end{array} \right .\)
and
\(h_y(y) = \left \{ \begin{array}{ll} 1 & | y | \le P_y \\ \frac{1}{2} + \frac{1}{2} \cos \left ( \pi \frac{| y | – P_y}{S_y} \right ) & P_y < | y | < Y_2 \\ 0 & | y | \ge Y_2 \end{array} \right .\)
with
-
- valley depth \( h_{p}=1.5\,km \)
-
- valley floor half width \( V_{x}=0.5\,km \)
-
- sloping sidewall width \( S_{x}=9\,km \)
-
- plateau hald width in cross-valley direction \( P_{x}=1\,km \)
-
- plateau half width in along-valley direction \( P_{y}=100\,km \)
- \( S_{y}=9\,km \)
- \( X_{2}= V_{x} + S_{x} \)
- \( X_{3}= V_{x} + S_{x} + P_{x} \)
- \( X_{4}= V_{x} + 2S_{x} + P_{x} \)
- \( Y_{2}= P_{y} + S_{y} \)
Profile:
-
- all simulations are started from an atmosphere in rest
-
- potential temperature \( \theta (z)= \theta _{s}+\Gamma z + \Delta \theta [1- exp\,(-\beta z)]\)
-
- surface pressure: \( p_{s}=1000\,hPa\)
-
- constant relative humidity of 40 %
-
- constant stratification of \(N \approx 0.011s^{-1} \)
-
- sensible heat flux for the uncoupled simulations: \( Q(t)=Q_{0}\,sin(\omega \,t) \) with \( Q_{0} = 200\,Wm^{-2} , \omega = \frac{2\pi}{24\,h}\) and the time t donates hours since sunrise.
Valley wind systems II
- sensible heat flux for the uncoupled simulations: \( Q(t)=Q_{0}\,sin(\omega \,t) \) with \( Q_{0} = 200\,Wm^{-2} , \omega = \frac{2\pi}{24\,h}\) and the time t donates hours since sunrise.
-
- Examples after Schmidli (2008)
-
- Construction of a testaxample for the uncoupled simulations
-
- First step: construction of the test valley after Schmidli (2008)
- Grid:
-
- across valley (x-direction): 120 km with spacing of 1 km
-
- along valley (y-direction): 400 km with spacing of 1 km
-
- vertical direction: 10 km with spacng of 100 m
- Profile:
-
- all simulations are started from an atmosphere in rest
-
- potential temperature: \(\theta (z) = \theta _{s} +\Gamma z + \Delta \theta [1- exp\,(-\beta z)]\)
-
- with
-
- \(\theta _{s} = 280\,K, \Gamma = 3.2\,K\,km^{-1}, \Delta \theta= 5\,K \)
-
- and \( \beta = 0.002m^{-1}\)
-
- constant relative humidity of 40%
-
- testcase like the uncoupled simulations, but only with heating process
- Results:
-
- maximum of the along valley wind speed: \(v = 5.77ms^{-1}\)
-
- vertical wind speeds across the valley: \(w = 0.5ms^{-1} \) and \( w = 0.15ms^{-1}\) downward.